Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Métodos Terapêuticos e Terapias MTCI
Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phytomedicine ; 112: 154682, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36739636

RESUMO

BACKGROUND: The immunosuppressive microenvironment of lung cancer serves as an important endogenous contributor to treatment failure. The present study aimed to demonstrate the promotive effect of DHA on immunogenic cell death (ICD) in lung cancer as well as the mechanism. METHODS: The lewis lung cancer cells (LLC), A549 cells and LLC-bearing mice were applied as the lung cancer model. The apoptosis, ferroptosis assay, western blotting, immunofluorescent staining, qPCR, comet assay, flow cytometry, confocal microscopy, transmission electron microscopy and immunohistochemistry were conducted to analyze the functions and the underlying mechanism. RESULTS: An increased apoptosis rate and immunogenicity were detected in DHA-treated LLC and tumor grafts. Further findings showed DHA caused lipid peroxide (LPO) accumulation, thereby initiating ferroptosis. DHA stimulated cellular endoplasmic reticulum (ER) stress and DNA damage simultaneously. However, the ER stress and DNA damage induced by DHA could be abolished by ferroptosis inhibitors, whose immunogenicity enhancement was synchronously attenuated. In contrast, the addition of exogenous iron ions further improved the immunogenicity induced by DHA accompanied by enhanced ER stress and DNA damage. The enhanced immunogenicity could be abated by ER stress and DNA damage inhibitors as well. Finally, DHA activated immunocytes and exhibited excellent anti-cancer efficacy in LLC-bearing mice. CONCLUSIONS: In summary, the current study demonstrates that DHA triggers ferroptosis, facilitating the ICD of lung cancer thereupon. This work reveals for the first time the effect and underlying mechanism by which DHA induces ICD of cancer cells, providing novel insights into the regulation of the immune microenvironment for cancer immunotherapy by Chinese medicine phytopharmaceuticals.


Assuntos
Carcinoma Pulmonar de Lewis , Ferroptose , Neoplasias Pulmonares , Animais , Camundongos , Neoplasias Pulmonares/tratamento farmacológico , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Estresse do Retículo Endoplasmático , Imunoterapia , Dano ao DNA , Microambiente Tumoral
2.
Front Pharmacol ; 13: 949835, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36034842

RESUMO

Lung cancer recruits tumor-associated macrophages (TAMs) massively, whose predominantly pro-tumor M2 phenotype leads to immunosuppression. Dihydroartemisinin (DHA) has been proven to remodel TAM into an anti-tumor M1 phenotype at certain concentrations in the present study, which was hypothesized to facilitate anti-lung cancer immunotherapy. However, how DHA remodels the TAM phenotype has not yet been uncovered. Our previous work revealed that DHA could trigger ferroptosis in lung cancer cells, which may also be observed in TAM thereupon. Sequentially, in the current study, DHA was found to remodel TAM into the M1 phenotype in vitro and in vivo. Simultaneously, DHA was observed to trigger ferroptosis in TAM and cause the DNA damage response and NF-κB activation. Conversely, the DHA-induced DNA damage response and NF-κB activation in TAM were attenuated after the inhibition of ferroptosis in TAM using an inhibitor of ferroptosis. Importantly, a ferroptosis inhibitor could also abolish the DHA-induced phenotypic remodeling of TAM toward the M1 phenotype. In a nutshell, this work demonstrates that DHA-triggered ferroptosis of TAM results in DNA damage, which could activate downstream NF-κB to remodel TAM into an M1 phenotype, providing a novel strategy for anti-lung cancer immunotherapy. This study offers a novel strategy and theoretical basis for the use of traditional Chinese medicine monomers to regulate the anti-tumor immune response, as well as a new therapeutic target for TAM phenotype remodeling.

3.
J Nanobiotechnology ; 20(1): 230, 2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35568865

RESUMO

BACKGROUND: Chemodynamic therapy (CDT) relying on intracellular iron ions and H2O2 is a promising therapeutic strategy due to its tumor selectivity, which is limited by the not enough metal ions or H2O2 supply of tumor microenvironment. Herein, we presented an efficient CDT strategy based on Chinese herbal monomer-dihydroartemisinin (DHA) as a substitute for the H2O2 and recruiter of iron ions to amplify greatly the reactive oxygen species (ROS) generation for synergetic CDT-ferroptosis therapy. RESULTS: The DHA@MIL-101 nanoreactor was prepared and characterized firstly. This nanoreactor degraded under the acid tumor microenvironment, thereby releasing DHA and iron ions. Subsequent experiments demonstrated DHA@MIL-101 significantly increased intracellular iron ions through collapsed nanoreactor and recruitment effect of DHA, further generating ROS thereupon. Meanwhile, ROS production introduced ferroptosis by depleting glutathione (GSH), inactivating glutathione peroxidase 4 (GPX4), leading to lipid peroxide (LPO) accumulation. Furthermore, DHA also acted as an efficient ferroptosis molecular amplifier by direct inhibiting GPX4. The resulting ROS and LPO caused DNA and mitochondria damage to induce apoptosis of malignant cells. Finally, in vivo outcomes evidenced that DHA@MIL-101 nanoreactor exhibited prominent anti-cancer efficacy with minimal systemic toxicity. CONCLUSION: In summary, DHA@MIL-101 nanoreactor boosts CDT and ferroptosis for synergistic cancer therapy by molecular amplifier DHA. This work provides a novel and effective approach for synergistic CDT-ferroptosis with Chinese herbal monomer-DHA and Nanomedicine.


Assuntos
Ferroptose , Neoplasias , Artemisininas , Linhagem Celular Tumoral , Glutationa , Humanos , Peróxido de Hidrogênio , Ferro , Nanomedicina , Neoplasias/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Microambiente Tumoral
4.
Infect Drug Resist ; 14: 1375-1379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859483

RESUMO

BACKGROUND: Giant condyloma acuminatum (GCA), also called Buschke-Löwenstein tumor, presents as a verrucous infiltrating lesion and is caused by sexual transmission of human papilloma virus. The optimal treatment is controversial and there are no standard guidelines because of its rarity and frequent recurrence. It has a relatively high local recurrence rate. OBJECTIVE: We here report eight patients (six men and two women) with GCA whose lesions were successfully treated topically with traditional Chinese medicine (TCM) preparations, paiteling. METHODS AND MATERIALS: We administered topical TCM preparations to eight patients diagnosed with GCA who had refused surgery. The treatment process included three stages, their durations depending on the speed of resolution of the lesions and the results of visual inspection with acetic acid. RESULTS: No significant complications occurred in any patient. The functional and esthetic outcomes were satisfactory. No recurrences were detected during follow-up. CONCLUSION: Topical treatment with TCM preparations may be a good alternative to surgery or other traditional methods for the treatment of GCA. This treatment has the advantages of being non-invasive, painless, and having a low risk of recurrence, and may be a useful adjunct to mainstream medical treatments.

5.
J Exp Clin Cancer Res ; 39(1): 249, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33208183

RESUMO

BACKGROUND: Accumulating evidence showed that regulating tumor microenvironment plays a vital role in improving antitumor efficiency. Programmed Death Ligand 1 (PD-L1) is expressed in many cancer cell types, while its binding partner Programmed Death 1 (PD1) is expressed in activated T cells and antigen-presenting cells. Whereas, its dysregulation in the microenvironment is poorly understood. In the present study, we confirmed that evodiamine downregulates MUC1-C, resulting in modulating PD-L1 expression in non-small cell lung cancer (NSCLC). METHODS: Cell viability was measured by MTT assays. Apoptosis, cell cycle and surface PD-L1 expression on NSCLC cells were analyzed by flow cytometry. The expression of MUC1-C and PD-L1 mRNA was measured by real time RT-PCR methods. Protein expression was examined in evodiamine-treated NSCLC cells using immunoblotting or immunofluorescence assays. The effects of evodiamine treatment on NSCLC sensitivity towards T cells were investigated using human peripheral blood mononuclear cells and Jurkat, apoptosis and IL-2 secretion assays. Female H1975 xenograft nude mice were used to assess the effect of evodiamine on tumorigenesis in vivo. Lewis lung carcinoma model was used to investigate the therapeutic effects of combination evodiamine and anti-PD-1 treatment. RESULTS: We showed that evodiamine significantly inhibited growth, induced apoptosis and cell cycle arrest at G2 phase of NSCLC cells. Evodiamine suppressed IFN-γ-induced PD-L1 expression in H1975 and H1650. MUC1-C mRNA and protein expression were decreased by evodiamine in NSCLC cells as well. Evodiamine could downregulate the PD-L1 expression and diminish the apoptosis of T cells. It inhibited MUC1-C expression and potentiated CD8+ T cell effector function. Meanwhile, evodiamine showed good anti-tumor activity in H1975 tumor xenograft, which reduced tumor size. Evodiamine exhibited anti-tumor activity by elevation of CD8+ T cells in vivo in Lewis lung carcinoma model. Combination evodiamine and anti-PD-1 mAb treatment enhanced tumor growth control and survival of mice. CONCLUSIONS: Evodiamine can suppress NSCLC by elevating of CD8+ T cells and downregulating of the MUC1-C/PD-L1 axis. Our findings uncover a novel mechanism of action of evodiamine and indicate that evodiamine represents a potential targeted agent suitable to be combined with immunotherapeutic approaches to treat NSCLC cancer patients. MUC1-C overexpression is common in female, non-smoker, patients with advanced-stage adenocarcinoma.


Assuntos
Mucina-1/metabolismo , Extratos Vegetais/uso terapêutico , Receptor de Morte Celular Programada 1/metabolismo , Quinazolinas/uso terapêutico , Animais , Linfócitos T CD8-Positivos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Regulação para Baixo , Feminino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Extratos Vegetais/farmacologia , Quinazolinas/farmacologia , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA